Intrinsic aerobic capacity correlates with greater inherent mitochondrial oxidative and H2O2 emission capacities without major shifts in myosin heavy chain isoform.

نویسندگان

  • Erin L Seifert
  • Mark Bastianelli
  • Céline Aguer
  • Cynthia Moffat
  • Carmen Estey
  • Lauren G Koch
  • Steven L Britton
  • Mary-Ellen Harper
چکیده

Exercise capacity and performance strongly associate with metabolic and biophysical characteristics of skeletal muscle, factors that also relate to overall disease risk. Despite its importance, the exact mechanistic features that connect aerobic metabolism with health status are unknown. To explore this, we applied artificial selection of rats for intrinsic (i.e., untrained) aerobic treadmill running to generate strains of low- and high-capacity runners (LCR and HCR, respectively), subsequently shown to diverge for disease risk. Concurrent breeding of LCR and HCR per generation allows the lines to serve as reciprocal controls for unknown environmental changes. Here we provide the first direct evidence in mitochondria isolated from skeletal muscle that intrinsic mitochondrial capacity is higher in HCR rats. Maximal phosphorylating respiration was ~40% greater in HCR mitochondria, independent of substrate and without altered proton leak or major changes in protein levels or muscle fiber type, consistent with altered control of phosphorylating respiration. Unexpectedly, H(2)O(2) emission was ~20% higher in HCR mitochondria, due to greater reduction of more harmful reactive oxygen species to H(2)O(2); indeed, oxidative modification of mitochondrial proteins was lower. When the higher mitochondrial yield was considered, phosphorylating respiration and H(2)O(2) emission were 70-80% greater in HCR muscle. Greater capacity of HCR muscle for work and H(2)O(2) signaling may result in enhanced and more immediate cellular repair, possibly explaining lowered disease risks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Selection for Whole Animal Low Intrinsic Aerobic Capacity Co-Segregates with Hypoxia-Induced Cardiac Pump Failure

Oxygen metabolism is a strong predictor of the general health and fitness of an organism. In this study, we hypothesized that a divergence in intrinsic aerobic fitness would co-segregate with susceptibility for cardiovascular dysfunction. To test this hypothesis, cardiac function was assessed in rats specifically selected over nineteen generations for their low (LCR) and high (HCR) intrinsic ae...

متن کامل

Insights into the skeletal muscle characteristics of three southern African antelope species

Skeletal muscle fibre type, cross-sectional area (CSA), maximum enzyme capacities and fibre oxidative capacities were investigated in three southern African antelope species. Muscle samples from blesbok (Damaliscus pygargus phillipsi), mountain reedbuck (Redunca fulvorufula) and greater kudu (Tragelaphus strepsiceros) were collected post mortem from the Vastus lateralis and analysed for myosin ...

متن کامل

HORSE SPECIES SYMPOSIUM: Exercise physiology of the horse.

Research in human and rodents has shown an age-associated decline in physical function, aerobic capacity and skeletal muscle mitochondrial function, which in humans begins around the age of 50 yr. On the other hand, many horses can still actively work or compete beyond 20 yr of age, an age equivalent to a 65-year-old human. The purpose of the present study was to determine the age-related chang...

متن کامل

Muscle protein metabolism and the sarcopenia of aging.

Loss of muscle mass, strength, and oxidative capacity accompanies normal aging in humans. The mechanisms responsible for these changes remain to be clearly defined. Muscle protein mass and function depend on protein turnover. Synthesis rate of the major muscle contractile protein, myosin heavy chain (MHC), and transcript levels of fast MHC isoforms decrease in association with strength reductio...

متن کامل

Adaptations in metabolic capacity of rat soleus after paralysis.

To determine whether long-term reductions in neuromuscular activity result in alterations in metabolic capacity, the activities of oxidative, i.e., succinate dehydrogenase (SDH) and citrate synthase (CS), and glycolytic, i.e., alpha-glycerophosphate dehydrogenase (GPD), enzyme markers were quantified in rat soleus muscles 1, 3, and 6 mo after a complete spinal cord transection (ST). In addition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 113 10  شماره 

صفحات  -

تاریخ انتشار 2012